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Abstract
Preconditioning methods have become the method

of choice for the solution of flowfields involving the
simultaneous presence of low Mach number flow and
transonic flow regions. It is well known that these
methods are important for insuring accurate numeri-
cal discretization as well as convergence efficiency over
various operating conditions such as low Mach num-
ber, low Reynolds number and high Strouhal numbers.
For unsteady problems, the preconditioning is intro-
duced within a dual-time framework wherein the phys-
ical time-derivatives are used to march the unsteady
equations and the preconditioned time-derivatives are
used for purposes of numerical discretization and itera-
tive solution. In this paper, we describe the implemen-
tation of the preconditioned dual-time methodology
in the OVERFLOW code. To demonstrate the per-
formance of the method, we employ both simple and
practical unsteady flowfields, including vortex prop-
agation in a low Mach number flow, flowfield of an
impulsively started plate (Stokes’ first problem) and
a cylindrical jet in a low Mach number crossflow with
ground effect. All the results demonstrate that the
preconditioning algorithm improves both the numeri-
cal accuracy and convergence efficiency and, thereby,
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enables low Mach number unsteady computations to
be performed at a fraction of the cost of traditional
time-marching methods.

Introduction

Accurate and efficient numerical simulation of un-
steady fluid flows is one of the remaining challenges for
the resolution of engineering problems. For high speed
flows, time-marching methods developed by the aero-
dynamics’ CFD community have been very successful
for both Euler and Navier-Stokes problems [1, 2]. Like-
wise, for incompressible flows, unsteady algorithms
based on projection methods [3, 4] or artificial com-
pressibility [5, 6, 7, 8] approaches have been widely
applied. However, many engineering problems involve
the co-existence of both compressible and incompress-
ible flow regimes in the same flow field. For such cases,
generalized preconditioned dual-time approaches have
been developed which allow the same computer code
to be applied in all speed regimes [9, 10].

An example of a flow field that simultaneously in-
volves both low speed and high speed regions is the
Harrier aircraft in near-hover (landing approach) con-
dition [11]. In this situation, the aircraft’s forward
velocity is approximately 0.04 Mach. However, at the
same time, the aircraft is kept in the air by four high
speed jet exhausts directed toward the ground. The
interaction of the jets with the cross-wind and the
ground effect renders this flow field extremely time-
dependent. A purely incompressible method would be
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appropriate for the low-speed free-stream region, but
not for the high speed jet plumes. On the other hand,
a transonic flow method would be appropriate for the
jets, but is inefficient for the free-stream. Thus, nu-
merical procedures for the solution of such problems
must be capable of simultaneously handling both tran-
sonic and low speed flow regimes.

The difficulty that transonic algorithms face at low
speeds arises due to the poor conditioning of the eigen-
values of the time-marching system. This lack of con-
ditioning leads to poor solution accuracy as well as
poor convergence properties. Over the last decade,
preconditioning methods have become increasingly
popular as a means of assuring that the time-marching
algorithm is well-conditioned in terms of both accu-
racy and efficiency at all speeds [12, 13]. For steady
state problems, these methods involve the introduction
of pseudo-time derivatives in lieu of the physical time
derivative terms in the time-marching system. For un-
steady flows, the formulation is typically cast within
a dual-time-stepping strategy, wherein the physical-
time derivatives are employed to follow the physical
transients and the pseudo-time derivatives serve as an
iterative device. Proper definition of the pseudo-time
derivatives serves to optimize the numerical solution
procedure, making the performance of the algorithm
commensurate with traditional transonic methods at
high speeds and with incompressible methods at low
speeds.

In this paper, the implementation of the precon-
ditioned dual-time algorithm in the OVERFLOW
code [1] is discussed. The OVERFLOW code is a com-
pressible Navier-Stokes code that uses the Chimera
overset grid approach [14] for simulating complex-body
configurations such as the afore-mentioned Harrier air-
craft. The main solution algorithm in the code is the
diagonalized approximate-factorization procedure [15].
The implementation of the preconditioned dual-time
scheme in the diagonalized approximate factorization
framework has been described by Buelow et al. [16] and
we follow the same approach in this paper. Specifically,
this involves a modification of the traditional diago-
nalization procedure to include both the physical and
preconditioned time-derivatives, thereby avoiding the
introduction of block matrices in the implicit operator.

The paper is organized as follows. We start by pre-
senting the preconditioned dual-time algorithm and its
implementation in the diagonalized framework of the
OVERFLOW code. Following this, we present several
computational examples to verify the accuracy and ef-
ficiency gains in various flow regimes of interest. The
example problems include both simple test problems,
such as the propagation of a Lamb vortex and Stokes’
first problem, as well as more practical situations, such

as a round-jet in a low-Mach number cross-flow with
ground-effect. The latter problem is representative of
the Harrier flow fields mentioned earlier. Finally, we
summarize the current status of the unsteady model-
ing capability in OVERFLOW and point out the areas
for future research and development.

Preconditioned Dual-Time Algorithm
Equations of Motion

The Euler equations in generalized coordinates can
be written as follows:

∂Q̂

∂t̂
+

∂Ê

∂ξ
+

∂F̂

∂η
+

∂Ĝ

∂ζ
= 0 (1)

Here,
Q̂ = J−1Q = (ρ, ρu, ρv, ρw, e)/J,

Ê = J−1




ρU
ρuU + p
ρvU
ρwU

(e + p)U


 ,

F̂ = J−1




ρV
ρuV

ρvV + p
ρwV

(e + p)V


 and

Ĝ = J−1




ρW
ρuW
ρvW

ρwW + p
(e + p)W




where J−1 = xξyηzζ + xζyξzη + xηyζzξ − xξyζzη −
xηyξzζ − xζyηzξ and U , V , and W are the contra-
variant velocities.

To carry out the iterations at each physical time
step, an artificial time(τ) term is explicitly introduced

∂Q̂

∂τ
+

∂Q̂

∂t̂
+

∂Ê

∂ξ
+

∂F̂

∂η
+

∂Ĝ

∂ζ
= 0 (2)

Convergence of the pseudo-time(sub-iterations) at
each physical time step is important for obtaining an
accurate transient solution. To optimize the perfor-
mance of the pseudo-iterations, the pseudo-time term
is written in terms of the primitive variable vector
Q̂p = (P, u, v, w, T )/J and the preconditioning matrix
Γp.

Γp
∂Q̂p

∂τ
+

∂Q̂

∂t̂
+

∂Ê

∂ξ
+

∂F̂

∂η
+

∂Ĝ

∂ζ
= 0 (3)

Here Γp takes the form discussed in Ref. [9] and is
given in the appendix.
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Discretization

Discretizing Eqn. 3 with first order finite difference
for artificial time and second order backward difference
for the physical time terms results in

Γp

Q̂k+1
p − Q̂k

p

∆τ
+

3Q̂k+1 − 4Q̂n + Q̂n−1

2∆t

+δξÊ
k+1 + δηF̂

k+1 + δζĜ
k+1 = 0

(4)

Here, k is the pseudo-iteration counter, n is the time
step counter and δ represents spatial differences in the
direction indicated by the subscript. After lineariza-
tion,

Γp
∆Q̂p

∆τ
+

3(Q̂k + Γe∆Q̂p) − 4Q̂n + Q̂n−1

2∆t

+ δξ(Êk + Âk
p∆Q̂p) + δη(F̂ k + B̂k

p∆Q̂p)

+ δζ(Ĝk + Ĉk
p∆Q̂p) = 0

(5)

where ∆Q̂p = Q̂k+1
p − Q̂k

p, Ap, Bp, and Cp are the flux
Jacobians with respect to Q̂p, and Γe = ∂Q

∂Qp
.

Rewriting this equation such that all terms evalu-
ated at sub-iteration k or time steps n and n − 1 are
on the right hand side and all terms multiplying ∆Q̂p

are on the left hand side[
Γp + Γe

3∆τ

2∆t
+ ∆τ(Âk

pδξ + B̂k
pδη + Ĉk

p δζ)
]

∆Q̂p = Rk

(6)
where

Rk = −∆τ

(
3Q̂k − 4Q̂n + Q̂n−1

2∆t

)

−∆τ(δξÊk + δηF̂
k + δζĜ

k)

(7)

The key step in the derivation of a diagonalized scheme
rests in combining the pseudo- physical time-derivative
terms on the left hand side into a single matrix. Ac-
cordingly, we define Sp = Γp + 3

2
∆τ
∆t Γe (see Appendix),

(
Sp + ∆τÂk

pδξ + ∆τB̂k
pδη + ∆τĈk

p δζ

)
∆Q̂p = Rk

(8)
Multiplying through by Γe and converting back to the
conservative system, we get

(
I + ∆τΓeS

−1
p Âkδξ + ∆τΓeS

−1
p B̂kδη

+ ∆τΓeS
−1
p Ĉkδζ

)
∆Q̂ = ΓeS

−1
p Rk

(9)

where A, B, and C are the flux Jacobians with respect
to Q̂.

Approximate Factorization and
Diagonalization

Applying approximate factorization,(
I + ∆τΓeS

−1
p Âkδξ

) (
I + ∆τΓeS

−1
p B̂kδη

)
(
I + ∆τΓeS

−1
p Ĉkδζ

)
∆Q̂ = ΓeS

−1
p Rk

(10)

Now, ΓeS
−1
p Â has the same eigenvalues as S−1

p Âp

and the eigenvectors of ΓeS
−1
p Â are the columns of

ΓeXξ where Xξ are the eigenvectors of S−1
p Âp. Thus,

ΓeS
−1
p Â = ΓeS

−1
p ÂpΓ−1

e = ΓeXξΛξX
−1
ξ Γ−1

e (11)

The scheme can be diagonalized using Eqn. 11 and
takes the form

ΓeXξ

(
I + b∆τδξΛ̃ξ

)
X−1

ξ Xη

(
I + b∆τδηΛ̃η

)
X−1

η Xζ(
I + b∆τδζΛ̃ζ

)
X−1

ζ Γ−1
e ∆Q̂ = ΓeS

−1
p Rk

(12)
where 1

b = 1 + 3
2

∆τ
∆t . The eigenvalues Λ̃ are discussed

in the appendix.

Artificial Dissipation
The diagonalized approximate factorization scheme

employed in OVERFLOW uses central differences to
discretize the spacial directions. It has been shown
by many researchers that, to maintain uniform accu-
racy across different flow regimes, it is important to
formulate the artificial dissipation terms for the pre-
conditioned system. In the dual-time context, this
means that the artificial dissipation terms must be con-
structed using the pseudo-time derivatives rather than
the physical time-derivatives. Accordingly, a typical
second order dissipation term can be written as

εe
∂

∂ξ

(
Γpσ(Γ−1

p Ap)
∂Qp

∂ξ

)
(13)

where σ(A) denotes the spectral radius of the matrix
A.

In the implicit scheme, the second-order dissipation
terms appear in the implicit LHS operator as well. For
the purposes of diagonalization, however, it is neces-
sary to modify the spectral radius term σ(Γ−1

p Ap) with
σ(S−1

p Ap). This approximation appears only on the
LHS and has been shown by Buelow et al. [16] to have
little or no effecct on the convergence efficiency. We
further point out that the modification does not im-
pact the accuracy of the discrete formulation.

Preconditioner Definition
The definition of the preconditioning matrix (Γp)

is determined by the parameter Mp (see Eqn. 17 in
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the appendix). In the present case, this parameter is
defined as

M2
p = MIN(MAX(M2

i ,M
2
u ,M

2
min), 1) (14)

where Mi is the local Mach number scale convention-
ally used in steady preconditioning [17] and M2

min is
a cutoff value usually set to 3 × M2

∞. Mu is a new
unsteady scale given by

Mu =
Lu

π∆ta
(15)

where Lu is a user specified unsteady length scale [16],
and a is the speed of sound. Note that when Mp = 1,
preconditioning is not applied.

Note that the unsteady preconditioning varies the
choice of the preconditioning parameter between the
inviscid choice and the no preconditioning choice. For
acoustic problems, the physical time-step size is small
since it is based upon the acoustic CFL number. The
unsteady preconditioning parameter then approaches
unity (equivalent to the no preconditioning choice).
On the other hand, for vortex propagation problems,
the physical time step is large as it is selected based
upon the particle CFL number. The corresponding un-
steady preconditioning parameter then approaches the
Mach number (equivalent to the steady precondition-
ing choice). For intermediate physical time step sizes,
the unsteady choice provides preconditioning values
between these two limits. As discussed in Ref. [10],
the unsteady preconditioning choice optimizes conver-
gence efficiency of the pseudo-time iterations regard-
less of the choice of physical time step. In most cases,
it also insures accurate scaling of the artificial dissi-
pation terms. The exceptions to this statement are
discussed further in the Results section.

Results
Vortex propagation

Vortex propagation is used as the first example of an
unsteady flow field. Trends for this problem have been
previously established in Ref. [10] based on stability
analysis. Specifically, a Lamb vortex is defined with
the following velocity distribution.

Vr(r, θ) = 0, Vθ = Γ

(
1 − exp −r2

φ2

r

)
(16)

where Γ is the vortex strength and φ is a character-
istic radius. The initial conditions are specified using
this velocity distribution and the vortex is propagated
using the dual-time-stepping scheme described in the
previous section. The present study is conducted at
free stream Mach numbers of 0.1 and 0.001. To study

the performance of the scheme with and without pre-
conditioning, the sub-iteration convergence is studied
for several time steps. The time step is characterized
by CFLu = u∆t

∆x , where u is the speed of propagation,
∆t is the physical time step and ∆x is the grid size.
Ideally, for efficient time-marching of vortex propaga-
tion problems, this CFL number should be of order
unity.

Here as well as in the other test cases presented
in this paper, we compare the convergence of the
sub-iterations at each physical time-step for three dif-
ferent choices of the preconditioning matrix, namely,
no preconditioning, steady preconditioning and un-
steady preconditioning. The first choice corresponds
to the traditional time-marching algorithm with dual
time-stepping, which is the base scheme in the OVER-
FLOW code. The second choice adopts the standard
steady state preonditioning choice used in steady low
Mach computations. Finally, the third choice concerns
the present implementation and is given in Eqn. 14.
We note that the length scale, Lu, is typically selected
to be the height of the domain. which is in accordance
with the suggested value in Ref. [10].

Figure 1 shows the results for M = 0.1 for four val-
ues of CFLu. For the smaller values of CFLu (0.1 and
1), the no preconditioning and unsteady precondition-
ing cases converge rapidly, taking about 200 iterations
to reach machine zero. On the other hand, the steady
preconditioning choice is observed to yield poor per-
formance. At the higher CFL numbers (10 and 100),
the steady and unsteady preconditioning choices con-
verge well, taking about 300 to 400 iterations to reach
machine zero, while the no preconditioning choice now
yields poorer performance. It is clear from these re-
sults that the unsteady preconditioning choice essen-
tially behaves like the no preconditioning choice for
small time steps and like the steady preconditioning
choice for large time steps. Importantly, the unsteady
choice yields the best performance for all physical time
step sizes. We point out however that for efficient
and accurate solutions, the optimal physical time step
choice would correspond to CFLu = 1.

The advantage of using the unsteady preconditioner
is observed to be more significant at even lower speeds
as Fig. 2 shows for a free stream Mach number of
0.001. At this speed, for low values of CFLu the
steady preconditioner does not converge in the sub-
iteration. The unsteady preconditioner is observed to
follow the nonpreconditioned case as expected (see Fig.
2(a)). At CFLu = 0.1, however, the unsteady pre-
conditioner outperforms the non-preconditioned case.
At CFLu = 1, the steady preconditioner is conver-
gent, but like the nonpreconditioned case it displays
poor performance. Again the unsteady preconditioner
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Fig. 1 Comparisons of residual convergence with and without preconditioner for a Lamb vortex at M = 0.1

outperforms the other choices. At an even higher
CFLu = 10 the steady preconditioner performs as well
as its unsteady counterpart. It is thus clear that in all
cases the unsteady preconditioning provides optimal
performance of the pseudo-time convergence. Note
that these trends are similar to those presented in Ref.
[10].

The subiteration convergence is important to study
because it has an impact on the accuracy of the solu-
tion. If the subiterations are not properly converged,
the solution will be inaccurate. Of course, practical
computations do not require that the sub-iterations be
converged to machine zero. Therefore, to establish the
amount of work required to obtain a solution, the num-
ber of sub-iterations required for 4-order convergence
is plotted in Fig. 3 against CFLu. For smaller values
of CFLu where the unsteady preconditioner performs
as well as the no preconditioning choice, a relatively

small number of sub-iterations are required. However,
at these small CFLu, a large number of time steps
is needed to march the solution a specified amount of
time. Accordingly, the CPU time required for march-
ing the vortex one rotation is plotted in Fig. 4. Here
at low values of CFLu, the CPU time required is pro-
hibitively high. For CFLu = O(1), where the vortex
is marching approximately 1 grid point per time step,
the unsteady preconditioner requires the least number
of sub-iterations and makes one rotation in the least
amount of CPU time. At larger values of CFLu, the
solution is no longer correct as the time step is simply
too high to accurately capture the vortex convection.
From these results, it is clear that the preconditioned
dual-time scheme provides substantial savings in CPU
time for low Mach flowfields.

We next turn our attention to computational ac-
curacy. Vortex computations are notoriously difficult
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Fig. 2 Comparisons of residual convergence with and without preconditioner for a Lamb vortex at
M = 0.001

and the second-order schemes considered here are espe-
cially prone to excessive numerical damping. However,
we are primarily concerned with a comparative assess-
ment of the different preconditioning choices. Figure 5
shows vorticity contours of the initial condition (Fig.
5a) and the solution after one rotation through the (pe-
riodic) domain for the various preconditioning choices
(Figs. 5b, c and d). The non-preconditioned result
(Fig. 5b) is wrong, with the correct vortex location
but strength significantly damped out. Note that this
is true even though the inner iterations are fully con-
verged. Thus, the discrepancy is due to the poor
accuracy of the numerical discretization (i.e. excessive
artificial dissipation) and not due to lack of conver-
gence. In contrast, the steady (Fig. 5c) and unsteady
preconditioning (Fig. 5d) results predict the correct
location of the vortex and a more respectable vortex

strength. These results clearly point to the bene-
fit of preconditioning in limiting excessive numerical
dissipation and hence preserving the accuracy of the
numerical formulation as well as computational effi-
ciency.

Stokes’ first problem

For the next test case, we consider the solution of an
impulsively started plate, which involves the unsteady
development of a viscous boundary layer. Commonly
referred to as Stokes’ first problem, there is a closed
form self-similar solution, which makes this an ideal
test case for verifying both convergence and accuracy
properties of the preconditioned scheme considered
here.

To systematically study the computational results,
we use an isotropic mesh with a fixed aspect ratio of
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unity. We use 11 grid points in the self-similar direc-
tion and 101 grid points in the wall-normal direction.
The domain height is 10−4 for a ∆y = 10−6. On this
uniform Cartesian grid, the initial boundary layer is
selected to extend to approximately 51 points off the
surface. The initial condition is obtained from the
analytical solution and the computations are carried
out to follow the continued evolution of the boundary
layer.

The characteristic length (Lu) that appears in the
definition of the unsteady preconditioning parameter
(Eqn. 15) is typically chosen to be the length or
width of the computational domain. Here, the rele-
vant length scale is the height of the domain, which is
given by 10−4. Figure 6 shows the sensitivity of the
sub-iteration convergence to the selection of this pa-
rameter for a von Neumann number of V NN = 1.67

(V NN = ν∆t
∆y2 ). It is clear that values of 10−4 (and

less) yield the best convergence rates. Figure 6 also
shows the convergence rates with no preconditioning
and the steady preconditioning choices. It is clear that
these choices yield substantially poorer sub-iteration
convergence.

To accurately capture the boundary layer growth,
an appropriate physical time step for the numerical
marching process must be chosen. The viscous time
step or Von Neumann number (V NN) is the char-
acteristic time-step of interest in this problem. It is
desirable to use a von Neumann number of 1 which cor-
responds approximately to a boundary layer growth of
1 grid point per time step. To assess the convergence
behavior of the low Mach preconditioner with respect
to V NN , the number of sub-iterations required to con-
verge the problem 4 orders of magnitude is plotted for
a given time step in Fig. 7. For small values of V NN ,
the no preconditioning choice shows good convergence
behavior. However, for higher values of V NN , the
convergence is extremely slow and the solution can not
be obtained in a reasonable number of sub-iterations.
Using steady preconditioning, the convergence hangs
before getting to 4 orders for V NN < 0.5. For higher
values of V NN proper convergence can be obtained,
but very large time steps can lead to poor resolution of
the transient evolution of the solution. The unsteady
preconditioner exhibits good sub-iteration convergence
behavior regardless of the choice of V NN .

The CPU time required to get four orders of sub-
iteration convergence is shown in Fig. 8. It is clear
that the unsteady preconditioning formulation yields
the best CPU times for all choices of VNN. As men-
tioned earlier, optimal efficiency and accuracy is ob-
tained for VNN of order unity. Under these conditions,
the no preconditioning case does not provide good con-
vergence, while the steady and unsteady precondition-
ing choices provide good sub-iteration convergence.
Indeed, Figure 7 indicates that the dual time precon-
ditioned formulation provides significant CPU savings
over the traditional (non-preconditioned) formulation.

As mentioned earlier, the choice of precondition-
ing also influences the accuracy of the computations
through the definition of the artificial dissipation
terms. Table 1 compares the solutions obtained at a
single point in the flowfield with the exact solution for
several choices of VNN and preconditionings. It can
be observed that the no preconditioning choice is not
convergent for large VNN, while the steady precondi-
tioning choice is not convergent for small VNN. The
unsteady preconditioning, in contrast, is always con-
vergent. The most accurate solutions are obtained by
the steady and unsteady preconditioning choices when
the VNN is order unity. It can also be observed that

7
American Institute of Aeronautics and Astronautics



0.01

0.030.03
0.03

0.07
0.05

0.090.11

0.
01 0.03

0.
19

0.05

0.11

0.
01

0.150.17

0.
03

0.11

0.05

a) Exact Solution

-0.009

-0.009

-0
.0

09

-0
.0

07 -0.003 -0.009-0.001-0
.0

03-0
.0

05

-0.007
-0.005-0

.0
03 0.001

-0
.0

03

0.004

0.006

0.
00

1 0.0040.
00

1

-0.003
0.008

0.0080.006

-0.001

-0.0010.0010.
00

6

0.
00

4

-0
.0

01

0.
00

6 0.0060.
01

0

-0
.0

01

0.
00

80.008

0.001

-0.001 0.004

0.
00

6

-0
.0

01-0.003 0.006
0.008

0.
00

1

0.0040.006-0.003

-0
.0

03

-0.007-0.001 0.001

-0.005 -0
.0010.001-0.001

-0
.0

03-0
.00

1-0.007

-0
.0

09

-0.003
b) No Preconditioner

-0.06-0
.0

4

0.06

-0
.0

4

-0.04

0.00 -0.02

0.
00

-0.04-0.02
0.

00

0.02
0.02 0.02 0.00

0.020.04
0.04-0

.0
2

0.04
0.060.06

0.04

0.080.06

0.04

0.08 0.02 -0.02
0.12

0.
14

0.
02

0.10
0.12

0.
04 0.14 0.16

0.
02

0.
10

0.
120.160.12

-0.02
-0.02 0.08-0.02 0.120.00 0.08

0.060.00 0.04

0.0
00.02

0.04
0.04

0.02
0.0

0
-0.02

-0.02 -0.02

0.02-0.02
-0.040.00

-0.04-0.04

-0.04

c) Steady Preconditioner

-0.02

0.00

-0
.0

2

-0.02
0.02

-0.020.04
0.04

0.
00

0.
04 0.06

0.
02 0.06

0.080.10

0.
02

0.
00

0.
04 0.040.
12

0.
06

0.
080.02

0.00

0.
02

-0
.0

20.
060.08

0.08

0.06

0.
040.08

0.06 0.06

0.04

0.00

-0
.02

-0
.0

2

d) Unsteady Preconditioner

Fig. 5 Comparison of solution with and without preconditioner for a Lamb vortex at M = 0.001

the no preconditioning result for small VNN is some-
what inaccurate even though the solution is converged.
This is because the poor scaling of the artificial dissi-
pation terms yields a more diffusive formulation. For
a more detailed explanantion, the reader is referred to
Ref. [9]. Interestingly, the unsteady preconditioning
result for small VNN is also somewhat in error. This
is because the unsteady preconditioning approaches
the no preconditioning formulation at small VNN and
the corresponding artificial dissipation terms become
poorly scaled. This difficulty may be readily circum-
vented by separating the preconditioning formulation
used for the time-derivative (which is responsible for
convergence effficiency) and that used for the artifi-
cial dissipation terms (responsible for accuracy). Such

Table 1 Solution comparison for Stokes’ first prob-
lem with respect to various values of V NN

No Steady Unsteady Exact
VNN Precond. Precond. Precond. Solution
0.017 0.37151 0.37617∗ 0.37465 0.37622
0.167 0.37177∗ 0.37617∗ 0.37606 0.37622
1.67 0.37645∗ 0.37618 0.37619 0.37622

∗ Not converged

a formulation may be implemented within a multiple
pseudo-time framework as discussed in Ref. [18], but
is beyond the scope of the present article.

Cylindrical jet in cross flow with ground effect
A complex unsteady flow field akin to the problem

of a Harrier in ground effect is a jet in cross flow with
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ground effect. This problem has been studied exper-
imentally by Cimbala et. al. [19] with a jet at Mach
0.13 issuing out of a 3 in. cylindrical tube in the cen-
ter of a wind tunnel. The crosswind Mach number
is 0.013. The jet subsequently impinges on the wind
tunnel floor 9 in. away from the tube exit.

For the present simulation a single grid with cylin-
drical topology is used with stretching to assure
proper viscous mesh spacing near the tube walls and
ground. The mesh consists of approximately 250,000
grid points.

The experimental results of Cimbala et al. [19] re-
veal that the jet impinges on the ground and splays in
all directions. The cross flow pushes the jet creating
a horseshoe shaped vortex which surrounds the jet on
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converged(sub-iteration) Stokes’ first problem
boundary layer to grow 10 grid points at M = 0.001
on a grid of AR = 1

3 sides. The ground vortex in turn is observed to pul-
sate with a frequency of about 1-5 Hz, a result of the
interaction between the jet with the low speed cross-
flow. The general features of the flowfield are observed
in Fig. 9, which shows a particle trace issued from the
jet at a fixed point in time. The jet is seen to impinge
the ground and a horseshoe vortex is seen in front of
the jet.

The computation of this flowfield with a traditional
dual time scheme (without preconditioning) is stable
only for small time steps. This stability restriction
may be attributed to the poor convergence of the
sub-iterations at large time step values. Our stud-
ies indicated that the maximum physical time step
that could be reliably used was 5.5 × 10−5 s. Us-
ing this time step, more than 18,000 time steps are
required to resolve a frequency of 1 Hz (that is char-
acteristic of the ground vortex unsteadiness). Clearly,
this would render the computation prohibitively ex-
pensive. Moreover, the non-preconditioned choice also
leads to a more dissipative numerical solution, which
would also compromise the accuracy of the simula-
tions. In contrast, when the unsteady preconditioned
dual time scheme is employed, much larger time-steps
may be stably employed and reliable inner iteration
convergence is obtained. The computations presented
in this paper were obtained with a physical time step
size of 5.5 × 10−3 s., which corresponds to about 180
time steps per 1 Hz cycle. We point out however that
the larger physical time steps typically necessitate the
use of more inner iterations (compared with five inner
iterations used in the traditional algorithm). In the
present calculations, 50 inner iterations were employed
at each physical time step. Thus, the preconditioned
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Fig. 9 The particle trace at an instance in time for a jet at M = 0.13 in a M = 0.013 cross flow

dual time scheme yields a potential CPU savings of
about an order of magnitude. Figure 10 shows a plot
of the L2 norm of the residual at each physical time
step. The periodic unsteady nature of the flowfield is
evident. The lowest frequency indicated in these re-
sults is approximately 1.8Hz. We point out that these
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Fig. 10 The residual with respect to time step for
the jet in cross flow

results represent a preliminary effort of computing this
complex flowfield. Detailed evaluations are presently
underway and will be the subject of a future article.
Here, it is sufficient to state that the preconditioned
dual-time formulation shows potential in computing
complex multiple-timescale, 3-D problems with signif-
icantly improved accuracy and efficiency.

Summary

A preconditioned dual-time algorithm has been im-
plemented in the OVERFLOW code. The approach
follows the method of Buelow et al. to tailor the formu-
lation within the diagonalized solution procedure used
in the OVERFLOW code. Modifications of the pre-
conditioning selection to account for unsteady scales
have also been included. The method significantly en-
hances the capability of the code, enabling it to handle
unsteady flows over a wide range of Mach numbers and
time scales. Specifically, the preconditioned dual-time
method enhances accuracy by improving the scaling
of the artifical dissipation terms used in the numer-
ical discretization procedure and improves efficiency
by optimizing the number of sub-iterations required
at each physical time step. For low Mach number, low
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frequency problems, in particular, significant savings
in CPU time are possible.

The enhancements made possible by the method are
demonstrated for both simple and practical flowfields.
The simple test problems include the propagation of
a Lamb vortex in an straight channel and the flow-
field of an impulsively started plate. Computational
results reveal that the dual-time scheme with unsteady
preconditioning provides optimal sub-iteration conver-
gence for all choices of time step size and Mach num-
ber. Moreover, improved accuracy is also obtained
with the method.

Preliminary computations of a round jet in a low
Mach crossflow with ground effect have also been per-
formed. Here, the preconditioned dual-time scheme
enables the use of much larger physical time step sizes,
which is important for efficiently resolving the low fre-
quency pulsations of the horshoe-shaped ground vor-
tex. More detailed computations are currently being
performed and will be compared with experimental
trends. The eventual goal is to apply the validated
code to the computation of Harrier flowfields.

The limitation of the present implementation is
that the same preconditioning is employed for both
the artificial dissipation formulation and for the time-
derivative. The disadvantage of this is that the final
solution is dependent upon the choice of time-step
size. This difficulty may be effectively circumvented
through using separate preconditioners for the dissi-
pation and time-derivative terms. The former then
controls the accuracy of the discrete formulation, while
the latter controls convergence efficiency of the sub-
iterations. Implementation of such a multi-level pre-
conditioning formulation will be the subject of future
work.
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APPENDIX

The Preconditioning Matrix
The preconditioning matrix Γp has the form defined

in [16].

Γp =




ρ′p 0 0 0 ρT
uρ′p ρ 0 0 uρT
vρ′p 0 ρ 0 vρT
wρ′p 0 0 ρ wρT

(ρhp + h0ρ
′
p − 1) ρu ρv ρw ρhT + h0ρT




(17)
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where ρ′p = 1
εpa2 and a is the speed of sound. Here εp =

M2
p

1+(γ−1)M2
p

. However, in practice ρ′p is never computed

directly. Instead, computing the eigenvalues of S−1
p Ap

(Eqn. 22) involves the evaluation of the terms ρhT

d′ and
d
d′ . These terms are defined as follows.

ρhT
d′

=
ρhT

ρhT ρ′′p + (1 − ρhp)ρT

=
ρcp

ρcp(bρ′p + (1 − b)ρp) − ρ
T

=
cpa

2

cp( b
εp

+ γ − γb) − γR

=
a2

b
εp

− γb + 1

=
M2

pa
2

b−M2
p (b− 1)

(18)

Defining β′ = M2
p

b−M2
p (b−1)

ρhT
d′

= β′a2 (19)

Also,
d

d′
=

ρhT

d′
ρhT

d

= β′ (20)

The values of M2
p and b now controls the behavior of

the preconditioner. The parameter b switches the be-
havior of the preconditioner from unsteady to steady.
For steady flows, b = 1 and β′ = M2

p .
For unsteady flows, M2

p is defined by Eqn. 14.

Definition of Sp

Sp =
1
b




ρ′′p 0 0 0 ρT
uρ′′p ρ 0 0 uρT
vρ′′p 0 ρ 0 vρT
wρ′′p 0 0 ρ wρT

h0ρ
′′
p − (1 − ρhp) ρu ρv ρw ρhT + h0ρT




(21)
where ρ′′p = bρ′p − (b− 1)ρp. and 1

b = 1 + 3
2

∆τ
∆t

Eigenvalues of S−1
p Âp

λ1,2,3 = bU

λ4,5 =
b

2


U (

1 +
d

d′

)
±

√
U2

(
1 − d

d′

)2

+ 4
ρhT
d′




(22)
Eigenvalues for S−1

P B̂p and S−1
P Ĉp are similar.

Eigenvectors of S−1
p Âp

For the repeated eigenvalues(λ = bU), many choices
of the eigenvectors are possible. The following choice
keeps the eigenvectors associated with the linear eigen-
values from becoming degenerate by assuring that the
eigenvectors are non-vanishing independent of the ge-
ometric orientation [17].




0
0
ξ̃z
−ξ̃y
ξ̃x







0
−ξ̃z

0
ξ̃x
ξ̃y







0
ξ̃y
−ξ̃x

0
ξ̃z


 (23)

where ξ̃x,y,z = ξx,y,z

|∇ξ|
The eigenvectors corresponding to the eigenvalues

of λ+ and λ− are


−λ−−bU d
d′

λ+−λ−
bξ̃x

ρ(λ+−λ−)
bξ̃y

ρ(λ+−λ−)
bξ̃z

ρ(λ+−λ−)

− 1−ρhp

ρhT

λ−−bU d
d′

λ+−λ−




;




λ+−bU d
d′

λ+−λ−

− bξ̃x

ρ(λ+−λ−)

− bξ̃y

ρ(λ+−λ−)

− bξ̃z

ρ(λ+−λ−)

1−ρhp

ρhT

λ+−bU d
d′

λ+−λ−




(24)

For a perfect gas, the left and right eigenvector ma-
trices can be written as follows.

Xξ =




0 0 0 λ+−bU
λ+−λ−

λ−−bU
λ+−λ−

0 −bξ̃z bξ̃y
bξ̃x

ρ(λ+−λ−) − bξ̃x

ρ(λ+−λ−)

bξ̃z 0 −bξ̃x
bξ̃y

ρ(λ+−λ−) − bξ̃y

ρ(λ+−λ−)

−bξ̃y bξ̃x 0 bξ̃z

ρ(λ+−λ−) − bξ̃z

ρ(λ+−λ−)

bξ̃x bξ̃y bξ̃z
γ−1
ργ

λ+−bU
λ+−λ− −γ−1

ργ
λ−−bU
λ+−λ−




(25)
where

λ+ − λ− = b

√
U2(1 − d

d′
)2 + 4

ρhT
d′

|∇ξ|2

= b
√
U2(1 − β′)2 + 4a2β′|∇ξ|2

(26)

X−1
ξ =

1
b




−γ−1
γρ ξ̃x 0 ξ̃z −ξ̃y ξ̃x

−γ−1
γρ ξ̃y −ξ̃z 0 ξ̃x ξ̃y

−γ−1
γρ ξ̃z ξ̃y −ξ̃x 0 ξ̃z

1 A1ξ̃x A1ξ̃y A1ξ̃z 0
1 A2ξ̃x A2ξ̃y A2ξ̃z 0


 (27)

where A1 = −ρ(λ− − bU), A2 = −ρ(λ+ − bU), and
ξ can be replaced with η or ζ to obtain the eigen-

vector matrices for S−1
P B̂p, and S−1

P Ĉp.
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